Differentially Private Gaussian Processes
نویسندگان
چکیده
A major challenge for machine learning is increasing the availability of data while respecting the privacy of individuals. Differential privacy is a framework which allows algorithms to have provable privacy guarantees. Gaussian processes are a widely used approach for dealing with uncertainty in functions. This paper explores differentially private mechanisms for Gaussian processes. We compare binning and adding noise before regression with adding noise post-regression. For the former we develop a new kernel for use with binned data. For the latter we show that using inducing inputs allows us to reduce the scale of the added perturbation. We find that, for the datasets used, adding noise to a binned dataset has superior accuracy. Together these methods provide a starter toolkit for combining differential privacy and Gaussian processes.
منابع مشابه
Differentially Private Local Electricity Markets
Privacy-preserving electricity markets have a key role in steering customers towards participation in local electricity markets by guarantying to protect their sensitive information. Moreover, these markets make it possible to statically release and share the market outputs for social good. This paper aims to design a market for local energy communities by implementing Differential Privacy (DP)...
متن کاملTwo-Stage Architecture Optimization for Differentially Private Kalman Filtering
The problem of Kalman filtering under a differential privacy constraint is considered in this paper. This problem arises in scenarios where an aggregate statistic must be published in real-time based on privacy-sensitive input signals, which can be assumed to originate from a linear Gaussian model. We propose an architecture combining the differentially private Gaussian mechanism with a linear ...
متن کاملDifferential Privacy in distribution and instance-based noise mechanisms
In this paper, we introduce the notion of ( , δ)-differential privacy in distribution, a strong version of the existing ( , δ)-differential privacy, used to mathematically ensure that private data of an individual are protected when embedded into a queried database. In practice, such property is obtained by adding some relevant noise. Our new notion permits to simplify proofs of ( , δ) privacy ...
متن کاملThe Rate of Entropy for Gaussian Processes
In this paper, we show that in order to obtain the Tsallis entropy rate for stochastic processes, we can use the limit of conditional entropy, as it was done for the case of Shannon and Renyi entropy rates. Using that we can obtain Tsallis entropy rate for stationary Gaussian processes. Finally, we derive the relation between Renyi, Shannon and Tsallis entropy rates for stationary Gaussian proc...
متن کاملComplete convergence of moving-average processes under negative dependence sub-Gaussian assumptions
The complete convergence is investigated for moving-average processes of doubly infinite sequence of negative dependence sub-gaussian random variables with zero means, finite variances and absolutely summable coefficients. As a corollary, the rate of complete convergence is obtained under some suitable conditions on the coefficients.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1606.00720 شماره
صفحات -
تاریخ انتشار 2016